CloseKernels[]
{KernelObject[14,local,<defunct>],KernelObject[15,local,<defunct>],KernelObject[16,local,<defunct>],KernelObject[17,local,<defunct>],KernelObject[18,local,<defunct>],KernelObject[19,local,<defunct>],KernelObject[20,local,<defunct>],KernelObject[21,local,<defunct>]}
In[]:=
Needs["SubKernels`LocalKernels`"]​​Block[{$mathkernel=$mathkernel<>" -threadpriority=2"},LaunchKernels[]]
Out[]=
{KernelObject[1,local],KernelObject[2,local],KernelObject[3,local],KernelObject[4,local],KernelObject[5,local],KernelObject[6,local],KernelObject[7,local],KernelObject[8,local],KernelObject[9,local],KernelObject[10,local],KernelObject[11,local],KernelObject[12,local],KernelObject[13,local],KernelObject[14,local],KernelObject[15,local],KernelObject[16,local]}
In[]:=
Needs["SubKernels`LocalKernels`"]​​​​Block[{$mathkernel=$mathkernel<>" -threadpriority=2"},​​​​LaunchKernels[]]​​​​​​
Out[]=
{KernelObject[1,local],KernelObject[2,local],​​​​KernelObject[3,local],KernelObject[4,local],​​​​KernelObject[5,local],KernelObject[6,local],​​​​KernelObject[7,local],KernelObject[8,local],​​​​KernelObject[9,local],KernelObject[10,local],​​​​KernelObject[11,local],KernelObject[12,local],​​​​KernelObject[13,local],KernelObject[14,local],​​​​KernelObject[15,local],KernelObject[16,local]}​​​​​​
Print["Start time is ",ds=DateString[],"."];​​prec=5000;​​(**Numberofrequireddecimals.*.*)ClearSystemCache[];​​T0=SessionTime[];​​expM[pre_]:=​​Module[{x11,z,t,a,d,s,k,bb,c,end,iprec,xvals,x,pc,​​cores=16(*=4*numberofphysicalcores*),tsize=64,chunksize,​​start=1,ll,ctab,pr=Floor[1.005pre]},​​chunksize=cores*tsize;​​n=Floor[1.32pr];​​end=Ceiling[n/chunksize];​​Print["Iterations required: ",n];​​Print["Will give ",end,​​" time estimates, each more accurate than the previous."];​​Print["Will stop at ",end*chunksize,​​" iterations to ensure precsion of around ",pr,​​" decimal places."];d=Cosh[2*n*ArcSinh[1]];​​{b,c,s}={SetPrecision[-1,1.1*n],-d,0};​​iprec=pr/1;​​Do[xvals=Flatten[ParallelTable[Table[ll=start+j*tsize+l;​​x=N[E^(Log[ll]/(ll)),iprec];​​pc=iprec;​​While[pc<pr,pc=Min[4pc,pr];​​x=SetPrecision[x,pc];​​xll=Power[x,ll];z=(ll-xll)/xll;​​t=2ll-1;t2=t^2;​​x*=(1+​​SetPrecision[4.5,pc](ll-1)/t2+(ll+1)z/(2llt)-​​SetPrecision[13.5,pc]ll(ll-1)/(3llt2+t^3z))];(**​​N[Exp[Log[ll]/ll],pr]**)x,{l,0,tsize-1}],{j,0,​​cores-1},Method"FinestGrained"]];​​ctab=ParallelTable[Table[c=b-c;​​ll=start+l-2;​​b*=2(ll+n)(ll-n)/((ll+1)(2ll+1));​​c,{l,chunksize}],Method"Automatic"];​​s+=ctab.(xvals-1);​​start+=chunksize;​​st=SessionTime[]-T0;kc=k*chunksize;​​ti=(st)/(kc+10^-4)*(n)/(3600)/(24);​​(*If[kc>1,Print["As of ",DateString[]," there were ",kc,​​" iterations done in ",N[st,5]," seconds. That is ",N[kc/st,5],​​" iterations/s. ",N[kc/(end*chunksize)*100,7],"% complete.",​​" It should take ",N[ti,6]," days or ",N[ti*24*3600,4],​​"s, and finish ",DatePlus[ds,ti],"."]];​​Print[];*),{k,0,end-1}];​​N[-s/d,pr]];​​t2=Timing[MRB1=expM[prec];];Print["Finished on ",​​DateString[],". Proccessor and actual time were ",t2[[1]]," and ",​​SessionTime[]-T0," s. respectively"];​​Print["Enter MRB1 to print ",​​Floor[Precision[​​MRB1]]," digits. The error from a 6,500,000 or more digit calculation that used a different method is "];N[m3M-MRB1,20]​​​​​​​​​​
DuringevaluationofIn[76]:=StarttimeisTue9Apr202421:37:05.​​​​DuringevaluationofIn[76]:=Iterationsrequired:6631​​​​DuringevaluationofIn[76]:=Willgive7timeestimates,eachmoreaccuratethantheprevious.​​​​DuringevaluationofIn[76]:=Willstopat7168iterationstoensureprecsionofaround5024decimalplaces.​​​​DuringevaluationofIn[76]:=N::meprec:Internalprecisionlimit$MaxExtraPrecision=50.`reachedwhileevaluatingCosh[13262ArcSinh[1]].​​​​DuringevaluationofIn[76]:=FinishedonTue9Apr202421:37:06.Proccessorandactualtimewere0.75and0.8262937s.respectively​​​​DuringevaluationofIn[76]:=EnterMRB1toprint5019digits.Theerrorfroma6,500,000ormoredigit​​calculationthatusedadifferentmethodis​​